Publications
In the publications marked with *, authors are ordered alphabetically.
You can also check my Google Scholar.
Journal Papers
- T. M. Roddenberry and S. Segarra, Limits of Dense Simplicial Complexes, J. Mach. Learn. Res., vol. 24, no. 225, pp. 1-42, 2023. Arxiv Preprint
- S. Rey, T. M. Roddenberry, S. Segarra and A. G. Marques, Enhanced Graph-Learning Schemes Driven by Similar Distributions of Motifs, in IEEE Trans. Signal Process., vol. 71, pp. 3014-3027, 2023. Arxiv Preprint
- Y. Zhu, A. Swami, and S. Segarra, Free Energy Node Embedding via Generalized Skip-gram with Negative Sampling, IEEE Trans. Knowledge and Data Eng., vol. 35, no. 8, pp. 8024-8036, 2023. Arxiv Preprint
- G. Egan, M. Eisen, A. Ribeiro, and S. Segarra, “I would I had that corporal soundness”: Pervez Rizvi’s Analysis of the Word Adjacency Network Method of Authorship Attribution, Digital Scholarship in the Humanities, vol. 38, no. 4, pp. 1494-1507, 2023.
- L O’Bryan, T. Oxendahl, X. Chen, D. McDuff, S. Segarra, M. Wettergreen, M. E. Beier, and A. Sabharwal, Objective Communication Patterns Associated With Team Member Effectiveness in Real-World Virtual Teams, Human Factors, 2022.
- N. Zilberstein, C. Dick, R. Doost-Mohammady, A. Sabharwal, and S. Segarra, Annealed Langevin Dynamics for Massive MIMO Detection, IEEE Trans. Wireless Comm., vol. 22, no. 6, pp. 3762-3776, 2023. Arxiv Preprint
- Z. Zhao, G. Verma, C. Rao, A. Swami, and S. Segarra, Link Scheduling using Graph Neural Networks, IEEE Trans. Wireless Comm., vol. 22, no. 6, pp. 3997-4012, 2023. Arxiv Preprint
- Y. Zhu and S. Segarra, Hypergraphs with Edge-Dependent Vertex Weights: p-Laplacians and Spectral Clustering, Frontiers in Big Data, vol. 6, pp. 1020173, 2023. Arxiv Preprint
- B. Li, G. Verma, and S. Segarra, Graph-based Algorithm Unfolding for Energy-aware Power Allocation in Wireless Networks, IEEE Trans. Wireless Comm., vol. 22, no. 2, pp. 1359-1373, 2023. Arxiv Preprint
- M. Navarro and S. Segarra, Joint Network Topology Inference Via a Shared Graphon Model, IEEE Trans. Signal Process., vol. 70, pp. 5549-5563, 2022. Arxiv Preprint
- T. M. Roddenberry, F. Gama, R. G. Baraniuk, and S. Segarra, On Local Distributions in Graph Signal Processing, IEEE Trans. Signal Process., vol. 70, pp. 5564-5577, 2022. Arxiv Preprint
- S. Rey, S. Segarra, R. Heckel, and A. G. Marques, Untrained Graph Neural Networks for Denoising, IEEE Trans. Signal Process., vol. 70, pp. 5708-5723, 2022. Arxiv Preprint
- Y. Zhu and S. Segarra, Hypergraph Cuts with Edge-Dependent Vertex Weights, Applied Network Science, vol. 23, art. 45, 2022. Arxiv Preprint
- A. Balaji, B. Kille, A. D. Kappell, G. D. Godbold, M. Diep, R. A. L. Elworth, Z. Qian, D. Albin, D. J. Nasko, N. Shah, M. Pop, S. Segarra, K. L. Ternus, and T. J. Treangen, SeqScreen: Accurate and Sensitive Functional Screening of Pathogenic Sequences via Ensemble Learning, Genome Biology, vol. 23, art. 133, 2022. BioRxiv Preprint
- M. Navarro, Y. Wang, A. G. Marques, C. Uhler, and S. Segarra, Joint Inference of Multiple Graphs from Matrix Polynomials, J. Mach. Learn. Res., vol. 23, no. 76, pp 1-35, 2022. Arxiv Preprint
- A. Balaji, N. Sapoval, C. Seto, R. A. L. Elworth, Y. Fu, M. G. Nute, T. Savidge, S. Segarra, and T. J. Treangen, KOMB: K-core Based de Novo Characterization of Copy Number Variation in Microbiomes, Comp. and Struc. Biotech. J., vol. 20, pp. 3208-3222, 2022. BioRxiv Preprint
- P. Brown, M. Eisen, S. Segarra, A. Ribeiro, and G. Egan, How the Word Adjacency Network (WAN) algorithm works, Digital Scholarship in the Humanities, vol. 37, no. 2, pp. 321-335, 2022.
- G. Carlsson, F. Memoli, and S. Segarra, Robust Hierarchical Clustering for Directed Networks: An Axiomatic Approach, SIAM J. Applied Algebra and Geometry (SIAGA), vol. 5, no. 4, pp. 675-700, 2021. Arxiv Preprint
- T. M. Roddenberry and S. Segarra, Blind Inference of Eigenvector Centrality Rankings, IEEE Trans. Signal Process., vol. 69, pp. 3935-3946, 2021. Arxiv Preprint
- A. Chowdhury, G. Verma, C. Rao, A. Swami, and S. Segarra, Unfolding WMMSE using Graph Neural Networks for Efficient Power Allocation, IEEE Trans. Wireless Comm., vol. 20, no. 10, pp. 6004-6017, Sept. 2021. Arxiv Preprint
- D. Ramírez, A. G. Marques, and S. Segarra, Graph-signal Reconstruction and Blind Deconvolution for Structured Inputs, Signal Processing, vol. 188, pp. 108180, 2021. Arxiv Preprint
- S. Segarra, M. Eisen, G. Egan, and A. Ribeiro, A Response to Rosalind Barber’s Critique of the Word Adjacency Method for Authorship Attribution, ANQ: A Quarterly Journal of Short Articles, Notes and Reviews, vol. 34, no. 4, pp. 291-296, 2021.
- M. T. Schaub, Y. Zhu, J. B. Seby, T. M. Roddenberry, and S. Segarra, Signal Processing on Higher-Order Networks: Livin' on the Edge... and Beyond, Signal Processing, vol. 187, pp. 108149, 2021. Arxiv Preprint
- G. Leus, S. Segarra, A. Ribeiro, and A. G. Marques, The Dual Graph Shift Operator: Identifying the Support of the Frequency Domain, Journal of Fourier Analysis and Applications, vol. 27, art. 49, May 2021. Arxiv Preprint
- R. Shafipour, S. Segarra, A. G. Marques, and G. Mateos, Identifying the Topology of Undirected Networks from Diffused Non-stationary Graph Signals, IEEE Open J. Signal Process., vol. 2, pp. 171-189, March 2021. Arxiv Preprint
- B. Lamichhane, Y. Kim, S. Segarra, G. Zhang, S. Lhatoo, J. Hampson, and X. Jiang, Automated Detection of Activity Onset after Postictal Generalized EEG Suppression, BMC Med. Inform. Decis. Mak., vol. 20, no. 12, art. 327, Dec. 2020.
- A. G. Marques, S. Segarra, and G. Mateos, Signal Processing on Directed Graphs, IEEE Signal Process. Magazine, vol. 37, no. 6, pp. 99-116, Nov. 2020. Arxiv Preprint
- T. M. Roddenberry, M. T. Schaub, H. T. Wai, and S. Segarra, Exact Blind Community Detection from Signals on Multiple Graphs, IEEE Trans. Signal Process., vol. 68, pp. 5016-5030, 2020. Arxiv Preprint
- Y. Wang, S. Segarra, and C. Uhler, High-Dimensional Joint Estimation of Multiple Directed Gaussian Graphical Models, Electronic J. Stat., vol. 14, no. 1, pp. 2439-2483, 2020. Arxiv Preprint
- Y. Zhu, F. J. Iglesias, A. G. Marques, and S. Segarra, Estimating Network Processes via Blind Identification of Multiple Graph Filters, IEEE Trans. Signal Process., vol. 68, pp. 3049-3063, 2020. Arxiv Preprint
- Y. Zhu, M. T. Schaub, A. Jadbabaie, and S. Segarra, Network Inference from Consensus Dynamics with Unknown Parameters, IEEE Trans. Signal and Info. Process. over Networks, vol. 6, pp. 300-315, 2020. Arxiv Preprint
- M. T. Schaub, S. Segarra, and J. N. Tsitsiklis, Blind Identification of Stochastic Block Models from Dynamical Observations, SIAM J. Math. Data Science (SIMODS), vol. 2, no. 2, pp. 335–367, 2020. Arxiv Preprint
- H. T. Wai, S. Segarra, A. E. Ozdaglar, A. Scaglione, and A. Jadbabaie, Blind Community Detection from Low-rank Excitations of a Graph Filter, IEEE Trans. Signal Process., vol. 68, pp. 436 – 451, 2020. Arxiv Preprint
- *M. Avella-Medina, F. Parise, M. T. Schaub, and S. Segarra, Centrality Measures for Graphons: Accounting for Uncertainty in Networks, IEEE Trans. Network Science and Eng., vol. 7, no. 1, pp. 520-537, Jan. 2020. Arxiv Preprint
- S. Segarra, M. Eisen, G. Egan, and A. Ribeiro, A Response to Pervez Rizvi’s Critique of the Word Adjacency Method for Authorship Attribution, ANQ: A Quarterly Journal of Short Articles, Notes and Reviews, vol. 33, no.4, pp. 332-337, 2019.
- G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, Connecting the Dots: Identifying Network Structure via Graph Signal Processing, IEEE Signal Process. Magazine, vol. 36, no. 3, pp. 16-43, May 2019. Arxiv Preprint
- M. Eisen, A. Ribeiro, S. Segarra, and G. Egan, Stylometric analysis of Early Modern period English plays, Digital Scholarship in the Humanities, vol. 33, no. 3, pp. 500-528, Sept. 2018. Arxiv Preprint
- F. Gama, S. Segarra, and A. Ribeiro, Hierarchical Overlapping Clustering of Network Data Using Cut Metrics, IEEE Trans. Signal and Info. Process. over Networks, vol. 4, no. 2, pp. 392-406, June 2018. Arxiv Preprint
- *G. Carlsson, F. Memoli, A. Ribeiro, and S. Segarra, Hierarchical Clustering of Asymmetric Networks, Advances in Data Analysis and Classification, vol. 12, no. 1, pp. 65-105, Mar. 2018. Arxiv Preprint
- *G. Carlsson, F. Memoli, A. Ribeiro, and S. Segarra, Admissible Hierarchical Clustering Methods and Algorithms for Asymmetric Networks, IEEE Trans. Signal and Info. Process. over Networks, vol. 3, no. 4, pp. 711-727, Dec. 2017. Arxiv Preprint
- A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, Stationary Graph Processes and Spectral Estimation, IEEE Trans. Signal Process., vol. 65, no. 22, pp. 5911-5926, Nov. 2017. Arxiv Preprint
- J. D. Medaglia, W. Huang, S. Segarra, C. Olm, J. Gee, M. Grossman, A. Ribeiro, C. T. McMillan, and D. S. Bassett, Brain Network Efficiency is Influenced by Pathological Source of Corticobasal Syndrome, Neurology, vol. 89, no. 13, pp 1373-1381, Sept. 2017.
- S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, Network Topology Inference from Spectral Templates, IEEE Trans. Signal and Info. Process. over Networks, vol. 3, no. 3, pp. 467-483, Sept. 2017. Arxiv Preprint IEEE SPS Young Author Best Paper Award
- S. Segarra, A. G. Marques, and A. Ribeiro, Optimal Graph-Filter Design and Applications to Distributed Linear Network Operators, IEEE Trans. Signal Process., vol. 65, no. 15, pp. 4117-4131, Aug. 2017. [corresponds to Arxiv preprint Distributed Linear Network Operators using Graph Filters]
- S. Segarra, G. Mateos, A. G. Marques, and A. Ribeiro, Blind Identification of Graph Filters, IEEE Trans. Signal Process., vol. 65, no. 5, pp. 1146-1159, March 2017. Arxiv Preprint
- S. Segarra, M. Eisen, G. Egan, and A. Ribeiro, Attributing the Authorship of the Henry VI Plays by Word Adjacency, Shakespeare Quarterly, vol. 67 no. 2, pp. 232-256, 2016.
- S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, Reconstruction of Graph Signals through Percolation from Seeding Nodes, IEEE Trans. Signal Process., vol. 64, no. 16, pp. 4363 – 4378, Aug. 2016. Arxiv Preprint
- A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, Sampling of Graph Signals with Successive Local Aggregations, IEEE Trans. Signal Process., vol. 64, no. 7, pp. 1832 – 1843, Apr. 2016. Arxiv Preprint
- S. Segarra and A. Ribeiro, Stability and Continuity of Centrality Measures in Weighted Graphs, IEEE Trans. Signal Process., vol. 64, no. 3, pp. 543-555, Feb. 2016. Arxiv Preprint
- S. Segarra, M. Eisen, and A. Ribeiro, Authorship Attribution through Function Word Adjacency Networks, IEEE Trans. Signal Process., vol. 63, no. 20, pp. 5464-5478, Oct. 2015. Arxiv Preprint
- S. Segarra, W. Huang, and A. Ribeiro, Diffusion and Superposition Distances for Signals Supported on Networks, IEEE Trans. Signal and Info. Process. over Networks, vol. 1, no. 1, pp. 20-32, March 2015. Arxiv Preprint
Conference Papers
- C. Li, W. Chen, and S. Segarra, Topology Inference in Evolutionary Games on Graphs, preprint, 2023.
- Z. Zhao, A. Swami, and S. Segarra, Graph-based Deterministic Policy Gradient for Repetitive Combinatorial Optimization Problems, Intl. Conf. Learning Representations (ICLR), 2023.
- N. Zilberstein, C. Dick, R. Doost-Mohammady, A. Sabharwal, and S. Segarra, Accelerated Massive MIMO Detector based on Annealed Underdamped Langevin Dynamics, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), 2023.
- Z. Zhao, B. Radojicic, G. Verma, A. Swami, and S. Segarra, Delay-Aware Backpressure Routing Using Graph Neural Networks, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), 2023.
- N. Glaze, A. Bayer, X. Jiang, S. Savitz, and S. Segarra, Graph Representation Learning For Stroke Recurrence Prediction, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), 2023.
- M. Navarro and S. Segarra, GraphMAD: Graph Mixup for Data Augmentation Using Data-Driven Convex Clustering, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), 2023.
- T. M. Roddenberry, V. P. Grande, F. Frantzen, M. T. Schaub, and S. Segarra, Signal Processing On Product Spaces, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), 2023.
- T. M. Roddenberry and S. Segarra, Windowed Fourier Analysis for Signal Processing on Graph Bundles, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), 2023.
- L. O’Bryan, S. Segarra, J. Paoletti, S. Zajac, M. E. Beier, A. Sabharwal, M. Wettergreen, and E. Salas, Conversational Turn-taking as a Stochastic Process on Networks, Asilomar Conference on Signals, Systems, and Computers, pp. 1243-1247, 2022
- Y. Zhu, B. Li, and S. Segarra, Hypergraph 1-Spectral Clustering with General Submodular Weights, Asilomar Conference on Signals, Systems, and Computers, pp. 935-939, 2022.
- S. Rey, M. Navarro, A. Buciulea, S. Segarra, and A. G. Marques, Joint Graph Learning from Gaussian Observations in the Presence of Hidden Nodes, Asilomar Conference on Signals, Systems, and Computers, pp. 53-57, 2022.
- P. Namyar, B. Arzani, R. Beckett, S. Segarra, H. Raj, and S. Kandula, Minding the Gap between Fast Heuristics and their Optimal Counterparts, ACM Workshop on Hot Topics in Networks, pp. 138-144, 2022.
- B. Coleman, S. Segarra, A. Shrivastava, and A Smola, Graph Reordering for Cache-Efficient Near Neighbor Search, Conf. on Neural Info. Process. Systems (NeurIPS), pp. 38488–38500, 2022.
- N. Zilberstein, C. Dick, R. Doost-Mohammady, A. Sabharwal, and S. Segarra, Detection by Sampling: Massive MIMO Detector based on Langevin Dynamics, European Signal Process. Conf. (EUSIPCO), pp. 1651-1655, 2022.
- N. Zilberstein, C. Dick, R. Doost-Mohammady, A. Sabharwal, and S. Segarra, Robust MIMO Detection using Hypernetworks with Learned Regularizers, European Signal Process. Conf. (EUSIPCO), pp. 1626- 1630, 2022.
- Z. Zhao, A. Swami, and S. Segarra, Distributed Link Sparsification for Scalable Scheduling Using Graph Neural Networks, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 5308-5312, 2022.
- B. Li, A. Swami, and S. Segarra, Power Allocation for Wireless Federated Learning using Graph Neural Networks, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 5243-5247, 2022.
- T. M. Roddenberry, F. Frantzen, M. T. Schaub, and S. Segarra, Hodgelets: Localized Spectral Representations of Flows on Simplicial Complexes, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 5922-5926, 2022.
- M. Navarro and S. Segarra, Graphon-aided Joint Estimation of Multiple Graphs, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 5458-5462, 2022.
- Y. Zhu and S. Segarra, Hypergraph Cuts with Edge-Dependent Vertex Weights: Spectral Clustering Based on the 1-Laplacian, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 8837-8841, 2022.
- Z. Zhao, G. Verma, A. Swami, and S. Segarra, Delay-Oriented Distributed Scheduling using Graph Neural Networks, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 8902-8906, 2022.
- A. Chowdhury, F. Gama, and S. Segarra, Stability Analysis of Unfolded WMMSE for Power Allocation, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 5298-5302, 2022.
- F. Gama, N. Zilberstein, R. G. Baraniuk, and S. Segarra, Unrolling Particles: Unsupervised Learning of Sampling Distributions, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 5498-5502, 2022.
- S. Rey, A. Buciulea, M. Navarro, S. Segarra, and A. G. Marques, Joint Inference of Multiple Graphs with Hidden Variables from Stationary Graph Signals, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 5817-5821, 2022.
- A. Bayer, A. Chowdhury, and S. Segarra, Label Propagation across Graphs: Node Classification using Graph Neural Tangent Kernels, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 5483-5487, 2022.
- A. Chowdhury, G. Verma, C. Rao, A. Swami, and S. Segarra, ML-aided Power Allocation for Tactical MIMO, Military Comm. Conf. (MILCOM), pp. 273-278, 2021.
- Y. Zhu, A. Swami, and S. Segarra, Node Embedding based on the Free Energy Distance, Asilomar Conference on Signals, Systems, and Computers, pp. 187-191, 2021.
- B. Li, G. Verma, C. Rao, and S. Segarra, Energy-Efficient Power Allocation in Wireless Networks using Graph Neural Networks, Asilomar Conference on Signals, Systems, and Computers, pp. 732-736, 2021.
- V. M. Tenorio, S. Rey, F. Gama, S. Segarra, and A. G. Marques, A Robust Alternative for Graph Convolutional Neural Networks via Graph Neighborhood Filters, Asilomar Conference on Signals, Systems, and Computers, pp. 1573-1578, 2021.
- G. Cutura, B. Li, A. Swami, and S. Segarra, Deep Demixing: Reconstructing the Evolution of Epidemics Using Graph Neural Networks, European Signal Process. Conf. (EUSIPCO), pp. 2204-2208, 2021.
- Y. Zhu, B. Li, and S. Segarra, Co-clustering Vertices and Hyperedges via Spectral Hypergraph Partitioning, European Signal Process. Conf. (EUSIPCO), pp. 1416-1420, 2021.
- T. M. Roddenberry, N. Glaze, and S. Segarra, Principled Simplicial Neural Networks for Trajectory Prediction, International Conference on Machine Learning (ICML), vol. 139, pp. 9020-9029, 2021.
- T.M. Roddenberry, S. Segarra, and A Kyrillidis, Rank-One Measurements of Low-Rank PSD Matrices Have Small Feasible Sets, 2021.
- A. Chowdhury, G. Verma, C. Rao, A. Swami, and S. Segarra, Efficient Power Allocation using Graph Neural Networks and Deep Algorithm Unfolding, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 4725-4729, Toronto, Canada, June 6-11, 2021.
- A. Kumar, G. Verma, C. Rao, A. Swami, and S. Segarra, Adaptive Contention Window Design using Deep Q-learning, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 4950-4954, Toronto, Canada, June 6-11, 2021.
- Z. Zhao, G. Verma, C. Rao, A. Swami, and S. Segarra, Distributed Scheduling using Graph Neural Networks, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 4720-4724, Toronto, Canada, June 6-11, 2021.
- T. M. Roddenberry, M. Navarro, and S. Segarra, Network Topology Inference with Graphon Spectral Penalties, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 5390-5394, Toronto, Canada, June 6-11, 2021.
- C. Kaushik, T. M. Roddenberry, and S. Segarra, Network Topology Change-Point Detection from Graph Signals with Prior Spectral Signatures, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 5395-5399, Toronto, Canada, June 6-11, 2021.
- T. M. Roddenberry and S. Segarra, Blind Estimation of Eigenvector Centrality from Graph Signals: Beyond Low-pass Filtering, Asilomar Conference on Signals, Systems, and Computers, pp. 465-469, Pacific Grove, CA, November 1-4, 2020. Best Student Paper Award.
- T. M. Roddenberry and S. Segarra, Blind Inference of Centrality Rankings from Graph Signals, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 5335-5339, Barcelona, Spain, May 4-8, 2020.
- A. Madapu, S. Segarra, S. P. Chepuri, and A. G. Marques, Generative Adversarial Networks For Graph Data Imputation From Signed Observations, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 9085-9089, Barcelona, Spain, May 4-8, 2020.
- S. Segarra, T. M. Roddenberry, F. Memoli, and A. Ribeiro, Metric Representations of Networks: A Uniqueness Result, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 5345-5349, Barcelona, Spain, May 4-8, 2020.
- S. Rey, A. G. Marques, and S. Segarra, An Underparametrized Deep Decoder Architecture for Graph Signals, IEEE Intl. Wrksp. on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 231-235, Guadaloupe, West Indies, December 15-18, 2019.
- T. M. Roddenberry and S. Segarra, HodgeNet: Graph Neural Networks for Edge Data, Asilomar Conference on Signals, Systems, and Computers, pp. 220-224, Pacific Grove, CA, November 3-6, 2019.
- J. Jia, M. T. Schaub, S. Segarra, and A. R. Benson, Graph-based Semi-supervised & Active Learning for Edge Flows, ACM SIGKDD Conf. Knowledge Disc. and Data Min. (KDD), Anchorage, AK, August 4-8, 2019.
- C. Heghedus, S. Segarra, A. Chakravorty, and C. Rong, Neural Network Architectures for Electricity Consumption Forecasting, IEEE Intl. Conf. Green Computin Comm. (GreenCom), pp. 776-783, Atlanta, GA, July 14-17, 2019.
- *M. T. Schaub, S. Segarra, and H.T. Wai, Spectral Partitioning of Time-Varying Networks with Unobserved Edges, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 4938-4942, Brighton, UK, May 12-17, 2019. Arxiv Preprint
- Y. Zhu, F. J. Iglesias, A. G. Marques, and S. Segarra, Estimation of Network Processes via Blind Graph Multi-Filter Identification, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 5451-5455, Brighton, UK, May 12-17, 2019.
- M. T. Schaub and S. Segarra, Flow Smoothing and Denoising: Graph Signal Processing in the Edge-Space, IEEE Global Conf. Signal and Info. Process. (GlobalSIP), pp. 735-739, Anaheim, CA, November 29-29, 2018. Arxiv Preprint
- J. Yang and S. Segarra, Enhancing Geometric Deep Learning via Graph Filter Deconvolution, IEEE Global Conf. Signal and Info. Process. (GlobalSIP), pp. 758-762, Anaheim, CA, November 26-29, 2018. Arxiv Preprint
- S. Segarra, A. G. Marques, M. Goyal, and S. Rey, Network Topology Inference from Input-Output Diffusion Pairs, IEEE Statistical Signal Processing Workshop, pp. 508-512, Freiburg im Breisgau, Germany, June 10-13, 2018.
- R. Shafipour, S. Segarra, A. G. Marques, and G. Mateos, Directed Network Topology Inference via Graph Filter Identification, IEEE Data Science Workshop, pp. 210-214, Lausanne, Switzerland, June 4-6, 2018.
- H. T. Wai, S. Segarra, A. E. Ozdaglar, A. Scaglione, and A. Jadbabaie, Community Detection from Low-rank Excitations of Graph Filters, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 4044-4048, Calgary, Canada, April 15-20, 2018. Best Student Paper Award.
- R. Shafipour, S. Segarra, A. G. Marques, and G. Mateos, Identifying Undirected Network Structure via Semidefinite Relaxation, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 4049-4053, Calgary, Canada, April 15-20, 2018.
- F. J. Iglesias, S. Segarra, S. Rey, A. G. Marques, and D. Ramirez, Demixing and Blind Deconvolution of Graph-diffused Sparse Signals, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 4189-4193, Calgary, Canada, April 15-20, 2018.
- S. Segarra, M. T. Schaub, and A. Jadbabaie, Network Inference from Consensus Dynamics, IEEE Conf. on Decision and Control, pp. 3212-3217, Melbourne, Australia, December 12-15, 2017. Arxiv Preprint
- S. Segarra, A. G. Marques, G. Arce, and A. Ribeiro, Design of Weighted Median Graph Filters, IEEE Intl. Wrksp. on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 1-5, Curaçao, Dutch Antilles, December 10-13, 2017.
- S. Segarra, Y. Wang, C. Uhler, and A. G. Marques, Joint Inference of Networks from Stationary Graph Signals, Asilomar Conference on Signals, Systems, and Computers, pp. 975-979, Pacific Grove, CA, October 29 – November 1, 2017.
- S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, Stationary Graph Processes: Parametric Power Spectral Estimation, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 4099-4103, New Orleans, USA, March 5-9, 2017.
- D. Ramirez, A. G. Marques, and S. Segarra, Graph-Signal Reconstruction and Blind Deconvolution for Diffused Sparse Inputs, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 4104-4108, New Orleans, USA, March 5-9, 2017.
- R. Shafipour, S. Segarra, A. G. Marques, and G. Mateos, Network Topology Inference from Non-Stationary Graph Signals, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 5870-5874, New Orleans, USA, March 5-9, 2017.
- S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, Robust Network Topology Inference, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 6518-6522, New Orleans, USA, March 5-9, 2017.
- S. Segarra, A. G. Marques, G. Arce, and A. Ribeiro, Center-Weighted Median Graph Filters, IEEE Global Conf. Signal and Info. Process. (GlobalSIP), pp. 336-340, Washington DC, December 7-9, 2016.
- S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, Network Topology Identification from Imperfect Spectral Templates, Asilomar Conference on Signals, Systems, and Computers, pp. 1465-1469, Pacific Grove, CA, November 6-9, 2016.
- S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, Stationary Graph Processes: Nonparametric Power Spectral Estimation, IEEE Sensor Array and Multichannel Signal Process. Wrksp., pp. 1-5, Rio de Janeiro, Brazil, July 10-13, 2016. Best Paper Award.
- S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, Network Topology Identification from Spectral Templates, IEEE Intl. Wrksp. on Statistical Signal Process., pp. 1-5, Palma de Mallorca, Spain, June 26-29, 2016. Best Student Paper Award.
- S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, Blind Identification of Graph Filters with Multiple Sparse Inputs, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 4099-4103, Shanghai China, March 20-25, 2016.
- S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, Space-Shift Sampling of Graph Signals, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 6355-6359, Shanghai China, March 20-25, 2016.
- S. Segarra, A. G. Marques, and A. Ribeiro, Linear Network Operators Using Node-Variant Graph Filters, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 4850-4854, Shanghai China, March 20-25, 2016.
- F. Gama, S. Segarra, and A. Ribeiro, Overlapping Clustering of Network Data Using Cut Metrics, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 6415-6419, Shanghai China, March 20-25, 2016.
- J. Ma, W. Huang, S. Segarra, and A. Ribeiro, Diffusion Filtering for Graph Signals and Its Use in Recommendation Systems, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 4563-4567, Shanghai China, March 20-25, 2016.
- S. Segarra, G. Mateos, A. G. Marques, and A. Ribeiro, Blind Identification of Graph Filters with Sparse Inputs, IEEE Intl. Wrksp. on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 449-452, Cancun, Mexico, Dec. 13-16, 2015.
- S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, Aggregation Sampling of Graph Signals in the Presence of Noise, IEEE Intl. Wrksp. on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 101-104, Cancun, Mexico, Dec. 13-16, 2015. Version with appendix.
- S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, Reconstruction of Graph Signals: Percolation from a Single Seeding Node, IEEE Global Conf. Signal and Info. Process. (GlobalSIP), pp. 844-848, Orlando, FL, December 14-16, 2015. Version with appendix.
- S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, Sampling of Graph Signals: Successive Local Aggregations at a Single Node, Asilomar Conference on Signals, Systems, and Computers, pp. 1819-1823, Pacific Grove, CA, November 8-11, 2015. Best Student Paper Award.
- W. Huang, S. Segarra, and A. Ribeiro, Diffusion Distance for Signals Supported on Networks, Asilomar Conference on Signals, Systems, and Computers, pp. 1219-1223, Pacific Grove, CA, November 8-11, 2015.
- S. Segarra, A. G. Marques, and A. Ribeiro, Distributed Implementation of Network Linear Operators using Graph Filters, Allerton Conf. on Commun. Control and Computing, pp. 1406-1413, Univ. of Illinois at U-C, Monticello, IL, Sept. 30-Oct. 2, 2015.
- S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, Interpolation of graph signals using shift-invariant graph filters, European Signal Process. Conf. (EUSIPCO), pp. 210-214, Nice, France, August 31 – September 4, 2015. Version with appendix.
- S. Segarra and A. Ribeiro, Stability and Continuity of Centrality Measures in Weighted Graphs, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 3387-3391, Brisbane, Australia, April 19-24, 2015.
- S. Segarra and A. Ribeiro, Dithering and Betweenness Centrality in Weighted Graphs, IEEE Global Conf. Signal and Info. Process. (GlobalSIP), pp. 847-851, Atlanta, GA, December 3-5, 2014.
- *G. Carlsson, F. Memoli, A. Ribeiro, and S. Segarra, Hierarchical Quasi-Clustering Methods for Asymmetric Networks, JMLR W&CP: International Conference on Machine Learning (ICML), vol. 32, pp. 352-360, Beijing, China, June 21-26, 2014.
- S. Segarra and A. Ribeiro, A Stable Betweenness Centrality Measure in Networks, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 3859-3863, Florence, Italy, May 4-9, 2014.
- S. Segarra and A. Ribeiro, Hierarchical Clustering and Consensus in Trust Networks, IEEE Intl. Wrksp. on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp.85-88, Saint Martin, Dec. 15-18, 2013. Version with appendix.
- *G. Carlsson, F. Memoli, A. Ribeiro, and S. Segarra, Alternative Axiomatic Constructions for Hierarchical Clustering of Asymmetric Networks, IEEE Global Conf. Signal and Info. Process. (GlobalSIP), pp.791-794, Austin, TX, Dec. 3-5, 2013.
- *G. Carlsson, F. Memoli, A. Ribeiro, and S. Segarra, Hierarchical Clustering Methods and Algorithms for Asymmetric Networks, Asilomar Conference on Signals, Systems, and Computers, pp. 1773-1777, Pacific Grove, CA, November 3-6, 2013.
- *G. Carlsson, F. Memoli, A. Ribeiro, and S. Segarra, Axiomatic Construction of Hierarchical Clustering in Asymmetric Networks, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp.5219-5223, Vancouver, Canada, May 26-31, 2013.
- S. Segarra, M. Eisen, and A. Ribeiro, Authorship Attribution using Function Words Adjacency Networks, IEEE Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), pp.5563-5567, Vancouver, Canada, May 26-31, 2013.
Book Chapters
- M. T. Schaub, J.-B. Seby, F. Frantzen, T. M. Roddenberry, Y. Zhu, and S. Segarra, Signal Processing on Simplicial Complexes, in Higher-Order Systems, F. Battiston and G. Petri (Eds.), Springer, 2022
- S. Segarra, S. P. Chepuri, A. G. Marques, and G. Leus, Statistical Graph Signal Processing: Stationarity and Spectral Estimation, in Cooperative and Graph Signal Processing, P. M. Djuric and C. Richard (Eds.), Elsevier, 2018.
- G. Mateos, S. Segarra, and A. G. Marques, Inference of Graph Topology, in Cooperative and Graph Signal Processing, P. M. Djuric and C. Richard (Eds.), Elsevier, 2018.
- *G. Carlsson, F. Memoli, A. Ribeiro, and S. Segarra, Representable Hierarchical Clustering Methods for Asymmetric Networks, in Data Science: Innovative Developments in Data Analysis and Clustering, F. Palumbo, A. Montanari, and M. Vichi (Eds.), Springer, 2017. [book is a compilation of selected papers presented at the 2015 Conference of the International Federation of Classification Societies].
Theses
- S. Segarra, Metric Representations of Networks, Doctoral Thesis, 2016. Joseph and Rosaline Wolf Award for Best Doctoral Dissertation.
- S. Segarra, Word Adjacency Networks for Authorship Attribution: Solving Shakespearean Controversies, Master Thesis, 2014.