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ABSTRACT

We consider the task of estimating weighted adjacency ma-
trices in evolutionary games on graphs. In evolutionary
games on graphs, nodes play games with their neighbors
and update their strategies based on the outcomes of these
games. Existing link prediction methods often have limita-
tions. We propose a correlation matrix designed to estimate
the weighted adjacency matrix using convolutional neural
networks (CNNs). Our numerical experiments illustrate that
this method can predict weighted adjacency matrices with
high precision. Finally, we extend the correlation matrix to
correlation tensor and apply to hypergraphs.

Index Terms— Evolutionary Games, Machine Learning,
Edge Weight Estimation, Correlation Matrix

1. INTRODUCTION

Ever since the seminal contributions of John Maynard Smith [1]
and John Nash [2], evolutionary games have garnered signif-
icant attention. Studies have discovered that the population
dynamics of certain species, such as E-coli [3] and side-
blotched lizard [4], can be modeled using evolutionary game
theory, owing to their phenotypes which exhibit a rock-paper-
scissors dynamic. Furthermore, research [5] [6] has been
conducted on evolutionary games within finite populations
and those exhibiting spatial structures.

Building on the foundation laid by those pioneering stud-
ies, recent research has started to veer towards the examina-
tion of evolution games on networks [7] [8] [9]. Here, nodes
within these networks adopt strategies and play games with
their neighbors. Fig. 1 shows an example of an evolution-
ary game on a graph. Networks pervade almost every as-
pect of our lives, from friendship [10] to scientific collab-
oration [11] [12] to biological processes [13] [14]. Studies
[7] [15] [16] found that spatial and network structure plays an
important role in emergence of cooperation in evolutionary
prisoner’s dilemma games and evolutionary snowdrift games.

In practical applications, we frequently have access to an
extensive volume of node evolution data, such as historical
behavioral patterns of individuals [17]. On the other hand,
the nature of interactions between these nodes (edge weights),

Fig. 1. A example of a rock-paper-scissors game on graphs.
Red = Rock, Blue = Paper, Green = Scissors.

especially human interactions, often remains elusive. Gain-
ing insight into these interactions is crucial. However, several
challenges complicate the estimation of edge weights. The
underlying evolution dynamics, often unknown or obscured
by randomness in the process, frequently hinder the identi-
fication of clear patterns. Additionally, evolutionary games
on graphs tend to reach equilibria or quasi-equilibria [7] [9].
At (quasi-) equilibria, extracting edge information becomes
an infeasible task. Furthermore, interactions in the real world
are usually not limited to pairwise ones [18] [19] [20].

The majority of link prediction methods concentrate on
non-weighted and dynamic networks, frequently dealing with
scenarios where adjacency matrix information is only par-
tially missing [21] [22] [23] [24] [25]. In addition, evolu-
tionary games on higher-order graphs (hypergraphs) are not
well studied.

In this work, we propose a method to predict weighted
adjacency matrix from node evolutionary data on a static net-
work. Our main contributions are as follows:

(i) We define a sample-averaged correlation matrix that
can be computed from node evolution data.

(ii) We demonstrate that convolutional neural networks
can effectively infer the weighted adjacency matrix from the
correlation matrix.

(iii) We extend the method to higher-order graphs and
show that it can accurately estimate binary hyper-edge weights.

Our approach leverages the characteristic of most evolu-
tionary games having bounded or finite strategy sets. This



method effectively addresses the previously mentioned chal-
lenges, including randomness in the evolutionary process, the
existence of equilibria, and higher-order interactions.

2. PROBLEM FORMULATION

Consider a discrete-time evolution on an undirected graph
G(V,E,W ) with nodes V , edges E ⊂ V × V and edge
weights W : E → R++. Here, R++ denotes all positive
real numbers. We only consider graphs without self-loops.
At time t, each node i has a strategy xi(t) ∈ S, where S is the
common strategy set for all nodes. Let |E| = N and the node
state vector be x⃗(t). Suppose there is an evolution rule:

f : SN × R+
N → S, (1)

such that x⃗i(t + 1) = f (x⃗(t), A1i, A2i, ..., ANi), where A
is the weighted adjacency matrix and R+ denotes all non-
negative real numbers. Eq. 1 states that on each time step,
each node plays games with all neighboring nodes. It updates
its strategy according to the outcomes of the games and the
(non-negative) edge weights associated with the games. See
Section 4 for examples.

We formulate the problem as follows:
Problem Assume f is unknown and we have suffi-

cient quantity of x⃗(t = 0)→ x⃗(t = 1) evolution data on many
known graphs. Then given sufficient quantity of x⃗(t = 0) →
x⃗(t = 1) evolution data on an unknown graph, find an esti-
mate of A. Here, we assume x⃗(t = 0) data is randomized.

We highlight that our choice to use evolution data from
x⃗(t = 0) to x⃗(t = 1), rather than from x⃗(t = 0) to x⃗(t = ∞),
is due to the presence of (quasi-)equilibria. If only x⃗(t = 0)
→ x⃗(t = ∞) data is available, one may pick the out-of-
equilibrium part of the evolution, provided that the evolution
is ”random enough”. However, this scenario will not be dis-
cussed in this work.

3. METHOD

The adjacency matrix represents the interaction strength be-
tween nodes. Intuitively, the larger Ajk is, the stronger j and
k are influencing each other’s strategy in the future. Mo-
tivated by this intuitive meaning, we define the correlation
function that represents the extend to which node j is in-
flenced by node k:

Cj←k =
∣∣∣< ei(sj(t=1)−sk(t=0)) >s⃗(t=0)

∣∣∣ , (2)

where < ... >s⃗(t=0) means average over all possible initial
conditions, sj and sk are the effective angles of node j and k.
For non-numerical strategies, the effective angle is defined by
properly distributing the strategies on [0, 2π]. For example,
in rock-paper-scissors games, ”rock”, ”paper” and ”scissors”
can be represented by 0, 2π

3 and 4π
3 ; in prisoner’s dilemma

games, ”cooperate” and ”defect” can be represented by 0 and
π. For numerical strategies, the effective angle is defined by

s(t) = 2π
x(t)−min(S)

max(S)−min(S)
(3)

where x(t) is the numerical strategy. Here, we assume that S
is bounded for continuous strategy sets or finite for discrete
strategy sets. Intuitively, this correlation function asks the
question: given a strategy sk(t = 0), what would node j
prefer to choose on the next time step? If there is an edge be-
tween j and k, node j should tend to choose the strategy that
is the best response to sk(t = 0). Otherwise, sj(t = 1)and
sk(t = 0) should be uncorrelated. As an example to illustrate
the physical meaning of the correlation function, one can eas-
ily show that if sj(t = 1) − sk(t = 0) is a constant, then
Cj←k = 1; and if sj(t = 1)− sk(t = 0) is a random variable
Unif(0, 2π), then Cj←k = 0.

Using Eq. 2, a correlation matrix C that includes all N2

interactions can be easily calculated from observed node data.
Here, Cjk = Cj←k. We should highlight that, for a given f ,
C is a function of only A. In some cases, if we know f and
A, C can be found theoretically. However, estimating A from
only C presents a formidable challenge. Therefore, we use
machine learning techniques to find an estimation function
g : C → A from existing data.

We test our method with data generated via Monte Carlo
simulations. Specifically, for each f , we generate a set of
random graphs. Then for each f and each graph, we gener-
ate a correlation matrix by time evolving many randomized
x⃗(t = 0). We use convolutional neural networks (CNNs) to
learn the estimation function g : C → A and test it on an-
other set of random graphs. The CNN models are built using
TensorFlow. The input data (N ×N correlation matrix) goes
through two convolutional layers with kernel size N ×N and
”Same” padding. We use MSE loss function and the ’adam’
optimizer to train the CNN.

In addition, it is apparent that while matrix A is symmet-
ric, matrix C is not. For instance, in a star graph, the strategy
of a branch node is significantly more influenced by the cen-
tral node than the central node’s strategy is influenced by the
branch node. Although learning g : C → A with the asym-
metric C is perfectly viable, we found that replacing C with
C∗ = C+CT

2 enhances the learning performance. Therefore,
in our numerical experiments, we use C∗ to estimate A. Fig. 2
shows an example of a set of C, C∗, estimated adjacency ma-
trix and the true adjacency matrix.

As illustrated in Fig. 3, for graphs with binary edge
weights, the adjacency matrices can be inferred by apply-
ing a threshold to C∗. This process involves examining the
data and selecting an appropriate threshold value. However,
this approach is not effective for graphs with continuously
weighted edges.

Finally, in a hypergraph, node interactions can be repre-
sented by a set of nodes {j, k, l}. Therefore, to capture the



Fig. 2. An example of predicting the adjacency matrix for an
Erdős–Rényi random graph in an RPS game with CNN. C is
the correlation matrix, C∗ = C+CT

2 , Aest is the estimated
adjacency matrix and A is the true adjacency matrix.

Fig. 3. An example of predicting the adjacency matrix by
thresholding the correlation matrix in an Erdős–Rényi ran-
dom graph with binary edge weights in an RPS game. The
prediction for Ajk is 1 if C∗jk is greater than the threshold,
and is 0 otherwise.

characteristics of the interactions, we extend the definition of
correlation matrix to correlation tensor. While it is difficult
to find a universal correlation tensor that works for all f , we
provide an example of a correlation tensor in Sec. 4, which is
tailored to address a specific f .

4. NUMERICAL EXPERIMENTS

4.1. Regular Graphs

We consider three evolutionary games on star graphs, com-
plete graphs, Erdős–Rényi (ER) random graphs and ran-
dom graphs generated by preferential attachment (PA). After
graphs are generated, we assign edge weights to existing
edges. Each edge weight is an independent random variable
Unif(0, 1). The evolution games we consider are:

(I) Each node i plays rock-paper-scissors with all neigh-
bors and earns payoff

∑N
j=1 pijAij , where pij is the payoff

of i when playing with j. Initially, each node starts with a
randomly selected strategy. After all games are played, each
node i updates its strategy such that its strategy at t + 1 is
the best response to x⃗i(t), where x⃗i denotes the strategies

of all nodes except i. In other words, it updates strategy to
maximize its payoff, assuming other nodes don’t change their
strategies in the next time step. We assume that players know
the edge weights of all edges connecting themselves. The
payoff matrix for the rock-paper-scissors game is given in ta-
ble 1.

(II) Each node i plays prisoner’s dilemma with all neigh-
bors and earns payoff

∑N
j=1 pijAij . Initially, each node starts

with a randomly selected strategy. After all games are played,
each node randomly chooses a neighbor and compares their
accumulated payoffs. If the neighbor’s accumulated payoff
is higher, the node will adopt its strategy; otherwise, it will
maintain its existing strategy. The rescaled payoff matrix
[6] [7] for the prisoner’s dilemma game is given in table 2.

(III) Each node i plays the gold splitting game with all
neighbors and earns payoff

∑N
j=1 pijAij . In the gold splitting

game, two players are tasked with dividing 100 units of gold.
Each player independently proposes a number x ∈ [0, 100].
If the sum of of their proposals exceeds 100, neither player
receives anything. Otherwise, each player is awarded the
amount he/she proposed. It is worth noting that the Nash
equilibria of the game between two players are

{(xi, xj)|xi + xj = 100}. (4)

After all games are played, each node i updates its strategy
such that its strategy at t+ 1 is the best response to x⃗i(t).

R P S
R (0,0) (-1,1) (1,-1)
P (1,-1) (0,0) (-1,1)
S (-1,1) (1,-1) (0,0)

Table 1. Payoff matrix for Rock-Paper-Scissors game.

C D
C (1,1) (0,b)
D (b,0) (0,0)

Table 2. Payoff matrix for rescaled prisoner’s dilemma game.
b > 1. In this work, we set b=2.

For each f , we train the CNN models for each graph type
(star, complete, ER or PA) and use the model to predict data
for all graph types. The results are shown in Tables 3, 4 and
5. Our method has 100% accuracy on predicting binary adja-
cency matrices for all f ’s and all graph types discussed above.

4.2. 3−uniform Hypergraphs

We consider evolutionary games on 3-uniform hypergraphs,
meaning each hyperedge is a set of three (and only three)
nodes. We generate random hypergraphs similar to Erdos-
Renyi random graphs, with each possible hyperedge has a
probability 0.5 to occur. The game we consider is a 3-player



PA ER Complete Star
PA 0.00582 0.0102 0.0213 0.0131
ER 0.00897 0.00452 0.00832 0.0239

Complete 0.0797 0.0225 0.00204 0.0207
Star 0.0768 0.157 0.311 0.000535

Table 3. The Average MSE of estimations for the RPS game.
Model trained with topology from the left, predicting topol-
ogy from the top. Average MSE is calculated as follows: for
each graph, we calculate the MSE of the estimation, then av-
erage over all testing samples. Testing sample size is 100.
N=15. The probability of an edge for Erdos-Renyi graphs is
0.5. The number of new edges in each preferential attachment
(Barabási–Albert model) step is 2.

PA ER Complete Star
PA 0.0122 0.0892 0.286 0.0496
ER 0.0279 0.0266 0.0767 0.155

Complete 0.616 0.174 0.0238 1.54
Star 0.0833 0.158 0.302 0.00132

Table 4. The Average MSE of estimations for the prisoner’s
dilemma game. Parameters are the same as table 3.

PA ER Complete Star
PA 0.00526 0.00877 0.0445 0.00745
ER 0.00568 0.00334 0.00709 0.0134

Complete 0.0173 0.00967 0.00291 0.0318
Star 0.0673 0.155 0.338 0.000693

Table 5. The Average MSE of estimations for the gold split-
ting game. Parameters are the same as table 3.

game with S = {A,B,C}. Again, the strategies are mapped
to 0, 2π

3 and 4π
3 . The game is won for all players when all

players employ distinct strategies, whereas it is lost for all
players if any strategy is duplicated among players. The pay-
off for winning is set to 1 for all players, while the payoff
for losing is set to −2 for all players. Each node plays game
within all hyperedges that contains it and accumulates pay-
offs. After all games are played, each node i updates its strat-
egy such that its strategy is the best response to x⃗i(t = 0).

For this particular evolution, we propose the following
problem-inspired correlation tensor:

Cj←k,l =
∣∣∣< ei(sj(t=1)− sk(t=0)+sl(t=0)

2 ) >sk ̸=sl

∣∣∣ . (5)

Here, the correlation function is averaged over all initial
conditions that satisfies sk ̸= sl. Intuitively, the function asks
the question: given three nodes, if a two nodes have differ-
ence strategies, what would the third node do? Apparently, if
there is a hyperedge between the three nodes, the third node
should prefer to chose the strategy that is different from the

two strategies that are already present. This correlation func-
tion therefore contains information of hyperedges. One may
compute all N3 elements of the N ×N ×N correlation ten-
sor and estimate the hyperedges. Here, we used a multilayer
perceptron (MLP), consists of a sequence of layers starting
with a flatten layer to reshape three-dimensional input data.
It goes through a dense layer with ReLU activation, followed
by another Dense layer with sigmoid activation. The network
uses Mean Squared Error as its loss function, and an ’adam’
optimizer.

Our numerical simulation shows that the correlation ten-
sor can predict the binary hyperedge tensor with 100% accu-
racy. However, we would like to highlight two key points: (A)
the performance for weighted hypergraphs (not shown here)
is not satisfactory, and (B) our definition of the correlation
function relies on prior knowledge of the underlying evolu-
tion dynamics.

5. CONCLUSION

We have defined a correlation matrix as a tool to learn the
weighted adjacency matrix from evolution data. Our numeri-
cal experiments have shown that the correlation matrix serves
as an excellent tool for estimating the weighted adjacency ma-
trix, without prior knowledge of the underlying evolution dy-
namics.

Potential directions for future work include investigat-
ing directed graphs and non-symmetric games, learning the
weighted adjacency matrix from x⃗(t = 0) → x⃗(t = ∞) evo-
lution data and finding a general correlation tensor for evolu-
tionary games on hypergraphs. In the presence of equilibria,
one may consider analyzing only the out-of-equilibrium part
of the evolution. Furthermore, clique expansion could be
considered to study evolutionary games on hypergraphs.
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[12] Albert-Laszlo Barabâsi, Hawoong Jeong, Zoltan Néda,
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